jueves, 11 de octubre de 2012

Atomo


MODELO ATÓMICO

Entre los múltiples usos del término modelo, se encuentra aquel que asocia el concepto a una representación o un esquema. Atómico, por su parte, es lo que está vinculado al átomo (la cantidad más pequeña de un elemento químico que es indivisible y que tiene existencia propia).                 Un modelo atómico, por lo tanto, consiste en representar, de manera gráfica, la materia en su dimensión atómica. El objetivo de estos modelos es que el estudio de este nivel material resulte más sencillo gracias a abstraer la lógica del átomo y trasladarla a un esquema.



Historia

Desde la Antigüedad, el ser humano se ha cuestionado de qué estaba hecha la materia. Unos 400 años antes de Cristo, el filósofo griego Demócrito consideró que la materia estaba constituida por pequeñísimas partículas que no podían ser divididas en otras más pequeñas. Por ello, llamó a estas partículas átomos, que en griego quiere decir "indivisible". Demócrito atribuyó a los átomos las cualidades de ser eternos, inmutables e indivisibles. Sin embargo las ideas de Demócrito sobre la materia no fueron aceptadas por los filósofos de su época y hubieron de transcurrir cerca de 2200 años para que la idea de los átomos fuera tomada de nuevo en consideración.

Modelo de Democrito


El ser humado siempre se cuestionó sobre la conformación de la materia, hasta que aproximadamente en el año  400 años antes de Cristo, Demócrito el reconocido filósofo griego, quién era discípulo de Leucipo ( creador de la teoría atómica de la materia, la cual dice que la materia se encuentra conformada por partículas idénticas e indivisibles).
Entonces Demócrito al proponer su modelo atómico dice que la materia se encuentra formada por diminutas partículas, las cuales no pueden ser divididas, por tal motivo a estas partículas indivisibles las llamó átomos (palabra griega que significa indivisible).
Las propuestas de Demócrito no fueron aceptadas por los filósofos de su época, no fue sino hasta 2200 años luego que el concepto de Demócrito sobre los átomos pudiera ser tomada en consideración.
Se dice que este filósofo, aparte de seguir los conceptos de Leucipo, también estudió la materia en base a los conceptos del también filósofo griego Aristóteles, aunque este último decia que la materia no se encontraba conformada por partículas sino más bien que esta era continua. 
Ya a inicios del siglo XIX, el gran químico inglés, John Dalton, se basó en la hipótesis de Demócrito y pudo así sentar las bases de la teoría atómica.
En resumen la teoría atómica de Demócrito sobre la materia, propone que absolutamente todas las cosas se encuentran conformadas por partículas pequeñisimas, invisibles, que no pueden ser divididas ni destruidas, estas particulas se encuentran en movimiento a través de la eternidad en un espacio infinito y vacío. 




Modelo de Dalton


El modelo atómico de Dalton surgido en el contexto de la química, fue el primer modelo atómico con bases científicas, formulado en 1808 por John Dalton. 
El modelo permitió explicar por primera vez porque las sustancias químicas reaccionaban en proporciones estequiométricas fijas (Ley de las proporciones múltiples), y por qué cuando dos sustancias reaccionan para formar dos o más compuestos diferentes, entonces las proporciones de estas relaciones son números enteros. Por ejemplo 14 g de carbono (C), pueden reaccionar con 16 g de oxígeno (O2) para formar monóxido de carbono (CO) o pueden reaccionar con 32 g de oxígeno para formar dióxido de carbono (CO2).

Postulados de Dalton.
Dalton explicó su teoría formulando una serie de enunciados simples:

1. La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
2. Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
3. Los átomos permanecen sin división, aun cuando se combinen en las reacciones químicas.
4. Los átomos, al combinarse para formar compuestos guardan relaciones simples.
5. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
6. Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
. La materia está formada por partículas pequeñísimas llamadas “átomos”. Estos átomos no se pueden dividir ni romper, no se crean ni se destruyen en ninguna reacción química, y nunca cambian. Los átomos de un mismo elemento son iguales entre sí, tienen la misma masa y dimensiones; por ejemplo, todos los átomos de hidrógeno son iguales. Por otro lado, los átomos de elementos diferentes, son diferentes; por ejemplo, los átomos de oxígeno son diferentes a los átomos de hidrógeno. Los átomos pueden combinarse para formar compuestos químicos. Por ejemplo, los átomos de hidrógeno y oxígeno pueden combinarse y formar moléculas de agua. Los átomos, al combinarse para formar compuestos guardan relaciones simples. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto. Por ejemplo, un átomo de carbono con uno de oxígeno forman monóxido de carbono (CO), mientras que dos átomos de oxígeno con uno de carbono, forman dióxido de carbono (CO2)

Modelo de Thomson 



El modelo atómico de Thomson, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, quien descubrió el electrón en 1897, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un pudín de pasas. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una nube de carga negativa se postulaba con una nube de carga positiva. El nuevo modelo atómico usó la amplia evidencia obtenida del estudio de los rayos catódicos a lo largo de la segunda mitad del siglo XIX. Si bien el modelo atómico de Dalton daba debida cuenta de la formación de los procesos químicos, postulando átomos indivisibles, la evidencia adicional suministrada por los rayos catódicos sugería que esos átomos contenían partículas eléctricas de carga negativa. El modelo de Dalton ignoraba la estructura interna, pero el modelo de Thomson aunaba las virtudes del modelo de Dalton y simultáneamente podía explicar los hechos de los rayos catódicos.

Modelo de Rutherford

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911. El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza", constituida por todos sus electrones, girando a gran velocidad alrededor de un "núcleo", muy pequeño, que concentra toda la carga eléctrica positiva y casi toda la masa del átomo. Rutherford Llegó a la conclusión de que la masa del átomo se concentraba en una región pequeña de cargas positivas que impedían el paso de las partículas alfa. Sugirió un nuevo modelo en el cual el átomo poseía un núcleo o centro en el cual se concentra la masa y la carga positiva, y que en la zona extra nuclear se encuentran los electrones de carga negativa.Rutherford pensó que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se suponía la existencia de fuertes concentraciones de carga positiva en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de de flexión de una partícula alfa relativamente liviana por parte de un átomo de oro más pesado, depende del "parámetro de impacto" o distancia entre la trayectoria de la partícula y el núcleo:


Modelo de Bohr

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo clásico del átomo, pero fue el primer modelo atómico en el que se introduce una cuantización a partir de ciertos postulados (ver abajo). Fue propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905. Bohr se basó en el átomo de hidrógeno para hacer el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.
Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.
Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.

Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.



Modelo de Sommerfeld


El Modelo atómico de Sommerfeld es un modelo atómico hecho por el físico alemán Arnold Sommerfeld (1868-1951) que básicamente es una generalización relativista del modelo atómico de Bohr (1913). nsuficiencias del modelo de Bohr El modelo atómico de Bohr funcionaba muy bien para el átomo de hidrógeno, sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético tenían distinta energía, mostrando que existía un error en el modelo. Su conclusión fue que dentro de un mismo nivel energético existían subniveles, es decir, energías ligeramente diferentes. Además desde el punto de vista teórico, Sommerfeld había encontrado que en ciertos átomos las velocidades de los electrones alcanzaban una fracción apreciable de la velocidad de la luz. Sommerfeld estudió la cuestión para electrones relativistas.
Características del modelo
Órbitas elípticas en el modelo de Sommerfeld.
En 1916, Sommerfeld perfeccionó el modelo atómico de Bohr intentando paliar los dos principales defectos de éste. Para eso introdujo dos modificaciones básicas: Órbitas casi-elípticas para los electrones y velocidades relativistas. En el modelo de Bohr los electrones sólo giraban en órbitas circulares. La excentricidad de la órbita dio lugar a un nuevo número cuántico: el número cuántico azimutal, que determina la forma de los orbitales, se lo representa con la letra l y toma valores que van desde 0 hasta n-1. Las órbitas con:
l = 0 se denominarían posteriormente orbitales s o sharp
l = 1 se denominarían p o principal.
l = 2 se denominarían d o diffuse.
l = 3 se denominarían f o fundamental.
Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postuló que el núcleo del átomo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo al tener este una masa varios miles de veces superior a la masa del electrón.
Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las órbitas del electrón pueden ser circulares y elípticas. Introduce el número cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,…(n-1), e indica el momento angular del electrón en la órbita en unidades de , determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la órbita.
Resumen
En 1916, Arnold Sommerfeld, con la ayuda de la relatividad de Albert Einstein, hizo las siguientes modificaciones al modelo de Bohr:
Los electrones se mueven alrededor del núcleo, en órbitas circulares o elípticas.
A partir del segundo nivel energético existen dos o más subniveles en el mismo nivel.
El electrón es una corriente eléctrica minúscula.
En consecuencia el modelo atómico de Sommerfeld es una generalización del modelo atómico de Bohr desde el punto de vista relativista, aunque no pudo demostrar las formas de emisión de las órbitas elípticas, solo descartó su forma circular.


Modelo de Schrödinger 


El modelo atómico de Schrödinger (1924) es un modelo cuántico no relativista. Se basa en la solución de la ecuación de Schrödinger para un potencial electrostático con simetría esférica, llamado también átomo hidrogenoide. En este modelo los electrones se contemplaban originalmente como una onda estacionaria de materia cuya amplitud decaía rápidamente al sobrepasar el radio atómico.
El modelo de Bohr funcionaba muy bien para el átomo de hidrógeno. En los espectros realizados para otros átomos se observaba que electrones de un mismo nivel energético tenían energías ligeramente diferentes. Esto no tenía explicación en el modelo de Bohr, y sugería que se necesitaba alguna corrección. La propuesta fue que dentro de un mismo nivel energético existían subniveles. La forma concreta en que surgieron de manera natural estos subniveles, fue incorporando órbitas elípticas y correcciones relativistas. Así, en 1916, Arnold Sommerfeld modificó el modelo atómico de Bohr, en el cual los electrones sólo giraban en órbitas circulares, al decir que también podían girar en órbitas elípticas más complejas y calculó los efectos relativistas. El modelo atómico de Schrödinger concebía originalmente los electrones como ondas de materia. Así la ecuación se interpretaba como la ecuación ondulatoria que describía la evolución en el tiempo y el espacio de dicha onda material. Más tarde Max Born propuso una interpretación probabilística de la función de onda de los electrones. Esa nueva interpretación es compatible con los electrones concebidos como partículas cuasipuntuales cuya probabilidad de presencia en una determinada región viene dada por la integral del cuadrado de la función de onda en una región. Es decir, en la interpretación posterior del modelo, éste era modelo probabilista que permitía hacer predicciones empíricas, pero en el que la posición y la cantidad de movimiento no pueden conocerse simultáneamente, por el principio de incertidumbre. Así mismo el resultado de ciertas mediciones no están determinadas por el modelo, sino sólo el conjunto de resultados posibles y su distribución de probabilidad. El modelo atómico de Schrödinger predice adecuadamente las líneas de emisión espectrales, tanto de átomos neutros como de átomos ionizados. El modelo también predice adecuadamente la modificación de los niveles energéticos cuando existe un campo magnético o eléctrico (efecto Zeeman y efecto Stark respectivamente). Además, con ciertas modificaciones semiheurísticas el modelo explica el enlace químico y la estabilidad de las moléculas. Cuando se necesita una alta precisión en los niveles energéticos puede emplearse un modelo similar al de Schrödinger, pero donde el electrón es descrito mediante la ecuación relativista de Dirac en lugar de mediante la ecuación de Schrödinger. El átomo reside en su propio eje.Sin embargo, el nombre de "modelo atómico" de Schrödinger puede llevar a una confusión ya que no explica la estructura completa del átomo. El modelo de Schrödinger explica sólo la estructura electrónica del átomo y su interacción con la estructura electrónica de otros átomos, pero no explica como es el núcleo atómico ni su estabilidad.


Modelo de Dirac-Jordan

En 1928 el físico ingles Dirac (1902-1984) y el físico-matemático alemán Jordan(1902-1980) propusieron desde un punto de vista matemático y considerando la teoría de la relatividad de A. Eintein, una ecuación que incluye una nueva propiedad de las particulas, el espin (s) propiedad estrictamente cuantica que complementa la descripcion fundamental de magnetismo. Esta ecuacion establece con mayor exatitud la localizacion de los elecrones. Dirac logro una descripcion cuanti-relativista del electron, prediciendo la existencia de la antimateria. En las ecuaciones de Dirac y Jordan aparece el cuarto parámetro con caracteristica cuantica, denominado s, ademas de los ya conocidos n, l, y m.